Cyber-Physical System for Risk Management

Walt Mahaffee USDA-ARS Horticulture Crops Research Unit

What is Farm Management?

Farm Manager Decision Process

Farm Manager Decision Process

Farm Manager Decision Process

Input Optimization

- Timing of individual practices
 - Task specific
- Decision support systems (e.g.disease forecasting)
 - Generally based on historical data
 - Requires reaction often immediate
- Improving Methods
- Sprayer technology, automation, etc
- What's missing?

Risk Management

 Balancing threats and consequences with incomplete data to achieve the goal of not failing (managers are averse to ambiguity not risk)

Risk Perception

Risk Management Goal

Minimize Maximum Regret

The Risk Pool is Changing

Projected Viticulture Suitability 2050

Current Suitability
Suitability Retained > 50% GCMs
Suitability Retained > 90% GCMs
Novel Suitability > 50% GCMs
Novel Suitability > 90% GCMs

www.pnas.org/cgi/doi/10.1073/pnas.1210127110

Requirements of a Risk Management System

- Provide actionable information not just make decisions
- Be minimally invasive and low maintenance
- Predict what needs to be done ahead of time
- Be scalable
 - Multiple start points (e.g. cost to buy in) that build upon each other
 - Field, farm, region/hourly, daily, weekly
- Have known accuracy and robustness
 - i.e. what are the odds
- Learns
- Be intuitive, usable and flexible

Traditional Innovation Process

Simulation Environments

Proposed Innovation Process

Agriculture Risk Insight System and Cyber-physical
Environment for decision support

All models are wrong; some are useful

- George Box

Advantages of Simulations

- Face complex situations which encourage development of problem solving techniques
- Test decisions without fear of outcomes
- Learn to combine information that is taught in isolation or out of context
- Create adaptability
- Assess risk perception and reactions
- Woessner, M. 2015. Teaching with SimCity: Using Sophisticated Gaming Simulations to Teach Concepts in Introductory American Government. Political Science & Politics 48(02):358-363 doi:10.1017/s104909651400211x..

Current Research Team

- Brian Bailey Crop modeling, UC Davis
- Chris Daly Meso-metereology, Oregon State Univ.
- Sal Hernandez Network analysis connectivity, Oregon State Univ.
- **Travis Lybbert** Economics, UC Davis
- Walt Mahaffee Plant Pathology, USDA-ARS-Hort. Crops Res. Lab
- Eric Pardyjak Micro-meteorology, Univ. Utah
- Rob Stoll Turbulent Transport, Univ. Utah

Problems with Weather Data

Forecasts Delivered on 4K girds

4 km/pixel

Limited distribution of Sensors and temporal resolution of collection

Terrain and Climate have Signatures

Interpolation down to 100m grid

Probabilistic Sensor Deployment

USDA

Model Coupling and Feed Back

Measuring Canopy Structure

Brian Bailey

Ground based LiDAR

University

Leaf Temperature

Brian Bailey

Brian Bailey

QUIC Dispersion Prediction

QUIC Dispersion Prediction

Simulating an Epidemic

Crop Builder Tool

OF UTAH

ł

Defining Simulation Boundries

OF UTAH

Defining Management Units

Defining Management Units

OF UTAH

Adding Crop Spacing

Adding Terrain Information

Importing Soil Data

Export to 3D Simulator

UNIVERSITY OF CALIFORNIA

UNIVERSITY

OF UTAH

Long-Range Vision: Cyber-Physical Systems

Foliar Pathology Lab 2017

Tara Neill: USDA-ARS

Sarah Lowder, Lindsey Thiessen & Brent Warneke Graduate Students, Oregon State University

Carley Allen, Jack Blackham, Baily Williams, & Katlyn Thrall: Undergraduates, Oregon State University

Questions

Tech Transfer Pipeline

Risk Management System

Probabilistic Sensor Deployment

• where to take data so that P-TRAC parameter and prediction variances are minimized

Y: True Disease Spread

 $f(\beta; x, \theta): Spread predicted by P - TRAC$ $\varepsilon: Modelling + Measurement errors$ $Y \equiv f(\beta; x, \theta) + \varepsilon$

• Approaches:

- ✓ Latin hypercube sampling
- Optimizing Fisher information
- ✓ Bayesian nonlinear experimental design

